

 Navigation

 	
 index

 	
 next |

 	Pulp RPM Support 2.8.0b5 documentation

Pulp RPM Support

	User Guide
	Introduction

	Release Notes

	Installation

	Configuration

	Quick Start

	Recipes

	Features

	ISOs

	FAQ

	Troubleshooting

	Indices and tables

	Technical Reference
	Yum Plugins

	Export Distributors

	ISO Plugins

	Sort Indexes

Indices and tables

	Index

	Search Page

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

User Guide

	Introduction
	How to Use This Guide

	Release Notes
	Pulp 2.8 Release Notes

	Pulp 2.7 Release Notes

	Pulp 2.6 Release Notes

	Pulp RPM 2.5 Release Notes

	Pulp RPM 2.4 Release Notes

	Pulp 2.3 Release Notes

	Pulp 2.2 Release Notes

	Pulp 2.1 Release Notes

	Installation
	Prerequisites

	Server

	Admin Client

	Consumer Client

	Agent

	Configuration
	Yum Importer Configuration

	ISO Importer Configuration

	Protected Repositories

	Quick Start
	Sync and Publish a Repo

	Consumer Setup and Use

	Next Steps

	Recipes
	Mirror a Remote Repository

	Use a Proxy

	Sync a Protected Repo

	Export Repositories and Repository Groups

	Errata

	Package Groups

	Package Categories

	Comps

	Chili

	Features
	Types

	Protected Repositories

	Export

	Proxy Settings

	Bandwidth Throttling

	ISOs
	Features

	Recipes

	FAQ
	Why is a checksum used to calculate uniqueness of RPMs?

	Troubleshooting
	RPM with non UTF-8 fields results in error

Indices and tables

	Index

	Search Page

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

Introduction

RPM Support for Pulp allows you to create and publish repositories of RPM
packages (including RPM, SRPM, DRPM, errata, distributions, etc.).

	Automatically retrieve packages from external repositories and store them in
local Pulp repositories, which are hosted by the Pulp server.

	Upload your own packages and errata into local Pulp repositories.

	Copy packages and errata from one local repository to another, enabling you to promote
testing versions to a production repository.

	Push packages out to large numbers of consumers.

	Track from the server what packages are installed on each consumer.

How to Use This Guide

This guide documents features and concepts that are specific to RPM support. The
Pulp User Guide (available here [http://www.pulpproject.org/docs/]) has much
more information about how to perform common operations like search repositories,
copy packages from one repository to another, etc. As such, the Pulp User Guide
should be used in conjunction with this guide.

You will also find that the pulp-admin and pulp-consumer command line
utilities have thorough help text available by appending --help to any command
or section.

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

Release Notes

Contents:

	Pulp 2.8 Release Notes
	Pulp 2.8.0

	Pulp 2.7 Release Notes
	Pulp 2.7.0

	Pulp 2.6 Release Notes
	Pulp 2.6.2

	Pulp 2.6.1

	Pulp 2.6.0

	Pulp RPM 2.5 Release Notes
	Pulp RPM 2.5.3

	Pulp RPM 2.5.2

	Pulp RPM 2.5.1

	Pulp RPM 2.5.0

	Pulp RPM 2.4 Release Notes
	Pulp RPM 2.4.4

	Pulp RPM 2.4.3

	Pulp RPM 2.4.2

	Pulp RPM 2.4.1

	Pulp RPM 2.4.0

	Pulp 2.3 Release Notes
	Pulp 2.3.0

	Pulp 2.3.1

	Pulp 2.2 Release Notes
	Pulp 2.2.0

	Pulp 2.2.1

	Pulp 2.1 Release Notes
	Pulp 2.1.1

	Pulp 2.1.0

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

 	Release Notes

Pulp 2.8 Release Notes

Pulp 2.8.0

New Behaviors

Repo sync cancellation now exists immediately.
If the syncronization of the repo is cancelled, the worker process exits immediately with
sys.exit(). A new worker process is created immediately, so further tasks are normally picked up
and executed.

New Features

	The default Apache configuration has changed in order to support deferred content
downloading. All requests to /pulp/repos are now re-written to /pulp/content.

Database Changes

The 2.8.0 release comes with strong validation enabled at the database layer. This required some
database changes to be made. These changes should go unnoticed for most users, however, for those
users integrating with Pulp in a deep way, this may affect you. This section recaps known changes.

Database Field Type Modifications

The following collections and fields have had some data quality fixes applied to avoid validation
issues.

	Collection
	Field Name
	Data Quality Fix

	units_package_category
	translated_name
	Previous values of “” are now {}

	units_package_category
	translated_description
	Previous values of “” are now {}

	units_package_environment
	translated_name
	Previous values of “” are now {}

	units_package_environment
	translated_description
	Previous values of “” are now {}

	units_package_group
	translated_name
	Previous values of “” are now {}

	units_package_group
	translated_description
	Previous values of “” are now {}

	units_erratum
	pushcount
	All int and floats converted to strings. All
null values are unset.

Database Fields Renamed

The database has renamed some field names for RPM unit models. This change should not be noticeable
through the API, but it does come with a migration which drops some indexes. The following field
names are renamed:

	Collection
	Old Field Name
	New Field Name

	units_distribution
	id
	distribution_id

	units_erratum
	from
	errata_from

	units_erratum
	id
	errata_id

	units_package_group
	id
	package_group_id

	units_package_category
	id
	package_category_id

	units_package_environment
	id
	package_environment_id

Database Index Changes

The following indexes have been dropped:

	Collection
	Index Name

	units_distribution
	id_1

	units_distribution
	id_1_family_1_variant_1_version_1_arch_1

	units_erratum
	id_1

	units_package_group
	id_1

	units_package_group
	id_1_repo_id_1

	units_package_category
	id_1

	units_package_category
	id_1_repo_id_1

	units_package_environment
	id_1

	units_package_environment
	id_1_repo_id_1

Several indexes have been created, check your db to see what indexes are in place.

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

 	Release Notes

Pulp 2.7 Release Notes

Pulp 2.7.0

New Features

	The repo authentication functionality associated with pulp_rpm has been moved
into platform. This allows other plugins to take advantage of this
functionality.

	The RPM plugin supports basic auth when fetching data from upstream repos.
This can be configured via basicauth-user and basicauth-pass when
creating or updating a repository.

	The export distributor can optionally create a PULP_MANIFEST file in the directory where
ISOs are generated. This allows the pulp ISO importer to directly import the published product.
See the help text for pulp-admin rpm repo sync run, or the distributor documentation for
details.

	Comps.xml file can now be uploaded into pulp via CLI or API. The unit_type_id to use for import
of the content is package_group or package_category.

	The RPM plugin supports mirrorlist urls when syncing repo. This can be specified at repo creation
step via feed option.

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

 	Release Notes

Pulp 2.6 Release Notes

Pulp 2.6.2

New Behaviors

Install errata tasks will fail during unit translation when the consumer
does not have an RPM profile.

The sync process checks the revision number in upstream metadata to determine
if it has changed since the previous sync. If not, most steps in the sync will
be skipped. On large repositories, this has reduced best-case sync times from
an order of minutes to a few seconds.

Bug Fixes

See the list of bugs fixed in 2.6.2 [https://pulp.plan.io/projects/pulp_rpm/issues?c%5B%5D=tracker&c%5B%5D=status&c%5B%5D=priority&c%5B%5D=cf_5&c%5B%5D=subject&c%5B%5D=author&c%5B%5D=assigned_to&c%5B%5D=cf_3&f%5B%5D=cf_4&f%5B%5D=tracker_id&f%5B%5D=&group_by=&op%5Bcf_4%5D=%3D&op%5Btracker_id%5D=%3D&set_filter=1&sort=priority%3Adesc%2Ccf_5%3Adesc%2Cstatus&utf8=%E2%9C%93&v%5Bcf_4%5D%5B%5D=2.6.2&v%5Btracker_id%5D%5B%5D=1]

Pulp 2.6.1

Bug Fixes

See the list of bugs fixed in 2.6.1 [https://pulp.plan.io/projects/pulp_rpm/issues?c%5B%5D=tracker&c%5B%5D=status&c%5B%5D=priority&c%5B%5D=cf_5&c%5B%5D=subject&c%5B%5D=author&c%5B%5D=assigned_to&c%5B%5D=cf_3&f%5B%5D=cf_4&f%5B%5D=tracker_id&f%5B%5D=&group_by=&op%5Bcf_4%5D=%3D&op%5Btracker_id%5D=%3D&set_filter=1&sort=priority%3Adesc%2Ccf_5%3Adesc%2Cstatus&utf8=%E2%9C%93&v%5Bcf_4%5D%5B%5D=2.6.1&v%5Btracker_id%5D%5B%5D=1]

Pulp 2.6.0

New Behaviors

When doing a sync operation, if the upstream “distribution” unit has not
changed since the last sync, pulp will no longer attempt to download additional
distribution-related files.

Bug Fixes

See the list of bugs fixed in 2.6.0 [https://pulp.plan.io/projects/pulp_rpm/issues?c%5B%5D=tracker&c%5B%5D=status&c%5B%5D=priority&c%5B%5D=cf_5&c%5B%5D=subject&c%5B%5D=author&c%5B%5D=assigned_to&c%5B%5D=cf_3&f%5B%5D=cf_4&f%5B%5D=tracker_id&f%5B%5D=&group_by=&op%5Bcf_4%5D=%3D&op%5Btracker_id%5D=%3D&set_filter=1&sort=priority%3Adesc%2Ccf_5%3Adesc%2Cstatus&utf8=%E2%9C%93&v%5Bcf_4%5D%5B%5D=2.6.0&v%5Btracker_id%5D%5B%5D=1]

RHBZ #1153378 [https://bugzilla.redhat.com/show_bug.cgi?id=1153378] was addressed in 2.6.0. If
you have older (circa 2009) yum clients that fail in a way similar to what is described
in this bug [https://bugzilla.redhat.com/show_bug.cgi?id=647828#c1], you may want to temporarily
re-enable SSLInsecureRenegotation under /etc/httpd/conf.d/pulp_rpm.conf until your client
systems have been updated.

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

 	Release Notes

Pulp RPM 2.5 Release Notes

Pulp RPM 2.5.3

Bug Fixes

This release fixes #1176698 [https://bugzilla.redhat.com/show_bug.cgi?id=1176698]

Pulp RPM 2.5.2

New Features

The generation of sqlite files is now done with createrepo_c instead of createrepo.

Bug Fixes

	This release fixes #1175818 [https://bugzilla.redhat.com/show_bug.cgi?id=1175818],

	#1178920 [https://bugzilla.redhat.com/show_bug.cgi?id=1178920],
#1171278 [https://bugzilla.redhat.com/show_bug.cgi?id=1171278] and
#1159040 [https://bugzilla.redhat.com/show_bug.cgi?id=1159040]. To perform the

upgrade, follow the Platform upgrade instructions [http://pulp-user-guide.readthedocs.org/en/2.5-release/release-notes/2.5.x.html#upgrade-instructions-for-2-4-x-2-5-x].

Pulp RPM 2.5.1

This is an important bugfix release that contains the fix for
#1165355 [https://bugzilla.redhat.com/show_bug.cgi?id=1165355] and
#1171509 [https://bugzilla.redhat.com/show_bug.cgi?id=1171509].

Pulp RPM 2.5.0

New Features

The Alternate Content Source feature now works during an rpm sync.

Bug Fixes

You can see the list of
bugs that were fixed [https://bugzilla.redhat.com/buglist.cgi?bug_status=VERIFIED&bug_status=RELEASE_PENDING&bug_status=CLOSED&classification=Community&component=iso-support&component=rpm-support&list_id=2768109&product=Pulp&query_format=advanced&target_release=2.5.0].

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

 	Release Notes

Pulp RPM 2.4 Release Notes

Pulp RPM 2.4.4

This release requires the application of a database migration due to
#1165355 [https://bugzilla.redhat.com/show_bug.cgi?id=1165355]. In that bug report, it was
learned that Pulp considered “sha” and “sha1” to be different checksums. As a result, some users
have experienced duplicate packages. This data migration changes all “sha” checksums to “sha1”, and
will remove packages with “sha” checksums if they are found to be duplicates of existing “sha1”
packages.

The 2.4.4 release is a minor bugfix release. You can see the list of bugs that were fixed
here [https://bugzilla.redhat.com/buglist.cgi?bug_status=VERIFIED&bug_status=RELEASE_PENDING&bug_status=CLOSED&classification=Community&component=iso-support&component=rpm-support&list_id=2768109&product=Pulp&query_format=advanced&target_release=2.4.4].

Please see the
Pulp Platform upgrade instructions [https://pulp-user-guide.readthedocs.org/en/2.4-release/release-notes.html]
for information on how to perform the upgrade.

Pulp RPM 2.4.3

No changes were introduced in the Pulp RPM 2.4.3 release. The Pulp build system requires Pulp RPM to
match versions with Pulp server, which did have an update.

Pulp RPM 2.4.2

Bug Fixes

The 2.4.2 release is a minor bugfix release. You can see the list of bugs that were fixed
here [https://bugzilla.redhat.com/buglist.cgi?bug_status=VERIFIED&bug_status=RELEASE_PENDING&bug_status=CLOSED&classification=Community&component=iso-support&component=rpm-support&list_id=3357893&product=Pulp&version=2.4.2].

Pulp RPM 2.4.1

New Features

The 2.4.1 release drops the need for Pulp’s custom build of M2Crypto. You should remove the Pulp
version of M2Crypto from your machine and downgrade to the version supplied by your operating
system. As a result of this, the per-repo client certificate checks that are performed by our
repository authorization system are inefficient, and you may notice degradation in performance
if you are using this feature. The Pulp team has provided a workaround, but it can only be used if
you don’t wish to use different CAs on different repositories. See the upgrade instructions below.

Bug Fixes

The 2.4.1 release is a minor bugfix release. You can see the list of bugs that were fixed
here [https://bugzilla.redhat.com/buglist.cgi?bug_status=VERIFIED&bug_status=RELEASE_PENDING&bug_status=CLOSED&classification=Community&component=iso-support&component=rpm-support&list_id=3357893&product=Pulp&version=2.4.1].

Upgrade Instructions

If you have the custom Pulp-provided M2Crypto package installed, you should downgrade to the
M2Crypto package that is provided by your operating system:

$ sudo yum downgrade m2crypto

If you are using the repository protection feature and if you do not require different certificate
authorities on each repository, it is recommended that you configure your web browser to validate
client certificates against trusted certificate authorities instead of having Pulp do it. For
Apache, please see their documentation [https://httpd.apache.org/docs/2.2/mod/mod_ssl.html] if
you wish to learn how to do this. You can set the new verify_ssl setting to false in
the [main]] section of /etc/pulp/repo_auth.conf if you wish to configure Pulp not to check
the certificate signatures. There is a performance advantage to configuring this setting this way if
you are able to use your web server to validate client certificates instead of Pulp.

Pulp RPM 2.4.0

New Features

	When a pulp_manifest.xml is added to kickstart repositories all of the additional files listed
in the manifest will be downloaded as part of the repo. The command line utility available
at pulp_rpm/playpen/yum_distributor/generate_distribution_manifest.py can be used to help with
creating the manifest file. This file should be stored as a peer of the treeinfo file in a source
repository that is being synced by Pulp.

	Added the ability to generate sqlite repository metadata files as part of an RPM repo
publish.

API Changes

	The generate_sqlite metadata flag was added to the yum_distributor distributor type.
Enabling that flag will turn on generation of sqlite repo metadata files. This is not
enabled by default.

	Removed the use_createrepo in favor of the more precise generate_sqlite flag

Yum Importer

When uploading RPMs, the unit key and metadata no longer need to be extracted client-side
and passed to the server. The server will inspect the RPM and extract the necessary information.

Yum metadata files can now be uploaded to a repository. Information on valid metadata
attributes can be found in the technical reference.

Upgrade Instructions

	pulp_rpm has added a dependency on python-lxml for xml parsing

Please see the
Pulp Platform upgrade instructions [https://pulp-user-guide.readthedocs.org/en/2.4-release/release-notes.html]
for information on how to complete the upgrade.

Known Issues

There is a bug where if you have migrated from Pulp 2.0 or earlier of to any version prior to 2.4
and are performing a second migration to 2.4 or greater you may encounter an error that
Applying migration pulp_rpm.plugins.migrations.0003_custom_metadata_on_scratchpad failed.
This is caused because of old data that is no longer needed.
The following command can be used to remove the data that is no longer needed:
find /var/lib/pulp/working/repos/ -path '*/yum_importer' -type d -exec rm -rf '{}' \;

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

 	Release Notes

Pulp 2.3 Release Notes

Pulp 2.3.0

New Features

	Users can now export repositories to a series of ISOs or
to a location on disk that is convenient for transfer to another system.

	The consumer applicability API is vastly different and performs much faster.
Please see the platform developer guide for details on the new API.

	The yum distributor now creates “listing” files in the parent directories of
published yum repositories, all the way up the tree to the base publish path.
These “listing” files are used by tools like Katello and Red Hat’s
subscription-manager to discover available repositories within a particular
path.

Client Changes

	The command pulp-admin iso repo content was renamed to pulp-admin iso repo isos

Notable Bug Fixes

	In some cases, repo groups were displayed with a translated name only [https://bugzilla.redhat.com/show_bug.cgi?id=1021656]. This is fixed in 2.3,
but a re-sync is required of any affected repository.

	Consumers are now notified [https://bugzilla.redhat.com/show_bug.cgi?id=975980]
when the relative path of a bound repository is changed.

	It is now far more intuitive [https://bugzilla.redhat.com/show_bug.cgi?id=979587]
to update all packages on a consumer from pulp-admin.

All Bugs

You can see the complete list of over 100 bugs that were
fixed in Pulp 2.3.0 [https://bugzilla.redhat.com/buglist.cgi?bug_status=VERIFIED&bug_status=RELEASE_PENDING&bug_status=CLOSED&classification=Community&component=iso-support&component=rpm-support&list_id=3357893&product=Pulp&version=2.3.0].

Known Issues

Fedora 19 repositories have a new data type called an “environment group” that
Pulp does not yet support. As such, you cannot use Anaconda to install Fedora 19
from a repository published by Pulp.

Pulp 2.3.1

Bugs Fixed

	SRPM copy [https://bugzilla.redhat.com/show_bug.cgi?id=1045100] is now supported
by pulp-admin.

	REST API clients could
see incorrect behavior [https://bugzilla.redhat.com/show_bug.cgi?id=1038309]
if using a distributor_id value different from the distributor_type_id
when adding a distributor to a repository. This issue did not affect users who
only use pulp-admin to interact with the REST API.

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

 	Release Notes

Pulp 2.2 Release Notes

Pulp 2.2.0

New Features

	The yum importer is all-new. It performs sync operations in less time, and it
uses much less RAM than in the past.

	The ISO Distributor now supports repository protection. See the API documentation for more details.

	The ISO Importer now allows ISO uploads.

	The ISO Importer now allows synchronization cancellation.

CLI Changes

	The pulp-admin rpm repo uploads rpm command now supports a flag (--skip-existing) to skip
re-uploading packages that are already in the destination repository.

	The pulp-admin rpm repo copy command now has a --all flag.

	Many commands that used to display a task ID will now automatically poll the
server and display progress until the task is complete.

	There is a new ISO section in the pulp-admin client. It currently allows syncing, creating, and updating
repositories.

API Changes

Yum Importer

Some of the configuration names for the yum importer have changed. See the table below for the mapping
of old names to new names.

	Old name
	New Name

	feed_url
	feed

	ssl_verify
	ssl_validation

	num_threads
	max_downloads

	proxy_url
	proxy_host

	proxy_user
	proxy_username

	proxy_pass
	proxy_password

	verify_checksum
	validate

	remove_old
	remove_missing

	num_old_packages
	retain_old_count

The following configuration values are no longer supported.

	newest

	The idea of only downloading the newest RPM is handled by the retain_old_count value.

	verify_size

	Verifying the size and checksum have been consolidated into a single parameter called validate.
During migration, the value for validate will be set on existing repositories using the
verify_checksum value.

All existing yum importers will be migrated by pulp-manage-db, but any non-Pulp code that creates
or updates yum importers with the API will need to be updated to use these new names.

ISO Importer

Some of the configuration names for the ISO importer have changed. See the table below for the mapping
of old names to new names.

	Old name
	New Name

	feed_url
	feed

	num_threads
	max_downloads

	proxy_url
	proxy_host

	proxy_user
	proxy_username

	remove_missing_units
	remove_missing

	validate_units
	validate

All existing ISO importers will be migrated by pulp-manage-db, but any non-Pulp code that creates
or updates ISO importers with the API will need to be updated to use these new names.

Upgrade Instructions

Please see the
Pulp Platform upgrade instructions [https://pulp-user-guide.readthedocs.org/en/pulp-2.2/release-notes.html]
for information on how to complete the upgrade.

The location of the global configuration file for the yum importer has changed. Any
custom changes to the pre-2.2.0 file
(/usr/lib/pulp/plugins/importers/yum_importer/yum_importer.conf), such as those
suggested when configuring a proxy, are removed during upgrade.
The new location of this file is /etc/pulp/server/plugins.conf.d/yum_importer.json.
Keep in mind the configuration property name changes above when re-adding proxy
information.

Pulp 2.2.1

Multiple proxy-related issues related to authentication and HTTPS to the proxy
were fixed in RHBZ #1022662 [https://bugzilla.redhat.com/show_bug.cgi?id=1022662] and
RHBZ #1014368 [https://bugzilla.redhat.com/show_bug.cgi?id=1014368].

A version comparison bug [https://bugzilla.redhat.com/show_bug.cgi?id=1026907] that
caused recursive copies to not copy all dependencies was fixed.

A race condition with XML namespace parsing
was fixed [https://bugzilla.redhat.com/show_bug.cgi?id=1019865].

Several ISO-related bugs were fixed. They can be seen in the list of
all fixed bugs [https://bugzilla.redhat.com/buglist.cgi?bug_status=VERIFIED&bug_status=RELEASE_PENDING&bug_status=CLOSED&classification=Community&component=iso-support&component=rpm-support&list_id=3357893&product=Pulp&version=2.2.1].

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

 	Release Notes

Pulp 2.1 Release Notes

Pulp 2.1.1

Pulp 2.1.1 is a bugfix release that also comes with a few performance improvements.

Changes

A new config option may be passed when making a copy request between two
repositories. If copy_children=False is passed as part of the override
config when copying errata, groups, or categories, then the child packages of
those units will not be copied. This saves time when copying an entire
repository, because for example, you can tell the group copy operation not to
worry about finding and retrieving the RPMs referenced by each group.

Noteworthy Bugs Fixed

RHBZ #873313 [https://bugzilla.redhat.com/show_bug.cgi?id=873313] - Very high memory
usage during repo sync

RHBZ #947208 [https://bugzilla.redhat.com/show_bug.cgi?id=947208] - RFE: Add proxy
server support to the ISO importer

RHBZ #949004 [https://bugzilla.redhat.com/show_bug.cgi?id=949004] - The ISO Importer
does not build the URL for the PULP_MANIFEST
correctly

RHBZ #949008 [https://bugzilla.redhat.com/show_bug.cgi?id=949008] - The ISO importer
set the SSL_VERIFY_HOST value to 1, when it
should be 2

RHBZ #953665 [https://bugzilla.redhat.com/show_bug.cgi?id=953665] - Copying large repo
uses tons of RAM and takes too long

Upgrade Instructions

Upgrade the Pulp Packages

Please see the
Pulp Platform upgrade instructions [https://pulp-user-guide.readthedocs.org/en/pulp-2.1.1/release-notes.html]
for information on how to complete the upgrade.

Pulp 2.1.0

New Features

	Pulp 2.1 now supports Fedora 18 and Apache 2.4.

CLI Changes

	The pulp-consumer bind and unbind operations have been moved out of the Pulp project into this project.
These operations can now be found under pulp-consumer rpm {bind,unbind}.

	The pulp-admin rpm consumer [list, search, update, unregister, history] commands from this project have
been moved into the Pulp project, and can now be found under pulp-admin consumer *.

Export Distributor Publishing Path

The export distributor now published to a different absolute URL path than it did in Pulp 2.0. Previously, the
exported ISOs were published on the Pulp server under /pulp/isos/. They will now be published under
/pulp/exports/. It is the user’s responsibility to move any ISOs they have exported out of
/pulp/isos/ before upgrading. This will be covered in the Upgrade Instructions.

Upgrade Instructions

Migrate Exported ISOs

Before upgrading, we will need to migrate any exported ISOs that were created using the export distributor to
their new location for Pulp 2.1. These ISOs can be in two different places in your filesystem, depending on
whether they were published over HTTP or HTTPS, or both. The HTTP published ISOs will be found in
/var/lib/pulp/published/http/isos/. If there are any files or folders in that location, you can move them to
their new location, or remove them if you do not need them anymore. This command will move them:

$ sudo mv /var/lib/pulp/published/http/isos /var/lib/pulp/published/http/exports

Similarly, ISOs published over HTTPS will be found in /var/lib/pulp/published/https/isos/. If you do not
wish to remove them, you can move them with this command:

$ sudo mv /var/lib/pulp/published/https/isos /var/lib/pulp/published/https/exports

Upgrade the Pulp Packages

Please see the
Pulp Platform upgrade instructions [https://pulp-user-guide.readthedocs.org/en/pulp-2.1/release-notes.html#upgrade-instructions-for-2-0-2-1]
for information on how to complete the upgrade.

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

Installation

Note

If you followed the Pulp installation [http://pulp.readthedocs.org/en/latest/user-guide/installation.html#server-installation]
instructions you already have RPM features installed. If not, this document
will walk you through the installation.

Prerequisites

The only requirement is to meet the prerequisites of the Pulp Platform. Please
see the `Pulp User Guide`_ for prerequisites including repository setup. Also
reference that document to learn more about what each of the following components
are for.

Server

If you followed the Pulp User Guide install instructions, you already have RPM
support installed. If not, follow these steps.

Consider stopping Pulp. If you need Apache to keep running other web apps, or if
you need Pulp to continue serving static content, it is usually sufficient to
disable access to Pulp’s REST API. That will be left as an exercise for the reader.
Otherwise, just stop Apache:

$ sudo apachectl stop

Next, install the package.

$ sudo yum install pulp-rpm-plugins

Then run pulp-manage-db to initialize the new types in Pulp’s database.

$ sudo pulp-manage-db

Finally, restart Apache.

$ sudo apachectl restart

Admin Client

If you followed the Pulp User Guide install instructions, you already have RPM
support installed. If not, just install the following package.

$ sudo yum install pulp-rpm-admin-extensions

Consumer Client

If you followed the Pulp User Guide install instructions, you already have RPM
support installed. If not, just install the following package.

$ sudo yum install pulp-rpm-consumer-extensions

Agent

If you followed the Pulp User Guide install instructions, you already have RPM
support installed. If not, just install the following package.

$ sudo yum install pulp-rpm-handlers

Then restart the Pulp agent.

$ sudo service pulp-agent restart

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

Configuration

Yum Importer Configuration

The yum importer is configured by editing
/etc/pulp/server/plugins.conf.d/yum_importer.json. This file must be valid JSON [http://json.org/].

The importer supports the settings documented in Pulp’s importer config docs [https://pulp.readthedocs.org/en/latest/user-guide/server.html#importers].

ISO Importer Configuration

The ISO importer is configured by editing
/etc/pulp/server/plugins.conf.d/iso_importer.json. This file must be valid JSON [http://json.org/].

The importer supports the settings documented in Pulp’s importer config docs [https://pulp.readthedocs.org/en/latest/user-guide/server.html#importers].

Protected Repositories

Repository authentication allows the creation of protected repositories in the
Pulp server. Consumers attempting to access protected repositories with yum
operations require some form of authentication in order to be granted access.

Two configuration file changes are necessary to enable repository authentication.

	Edit /etc/pulp/server.conf and set the ssl_ca_certificate option to
the full path of the CA certificate that signed the Pulp server’s httpd SSL certificate.
If this option is not set, it will default to /etc/pki/pulp/ssl_ca.crt.
This file must be readable by the apache user.

Note

If the default self signed certificate that is generated when mod_ssl
is installed is being used as the Pulp server’s certificate, copying that certificate
to /etc/pki/pulp/ssl_ca.crt and making it apache readable will suffice.
The default location for that certificate is /etc/pki/tls/certs/localhost.crt
or /etc/pki/tls/certs/<hostname>.crt.

	Edit /etc/pulp/repo_auth.conf and set the enabled option to true.
Save the file and restart Apache.

Validation With Your Web Server

If you are using the repository protection feature and if you do not require different certificate
authorities on each repository, it is recommended that you configure your web server to validate
client certificates against trusted certificate authorities instead of having Pulp do it. For
Apache, please see their documentation [https://httpd.apache.org/docs/2.2/mod/mod_ssl.html] if
you wish to learn how to do this. You can set the new verify_ssl setting to false in
the [main]] section of /etc/pulp/repo_auth.conf if you wish to configure Pulp not to check
the certificate signatures. There is a performance advantage to configuring this setting this way if
you are able to use your web server to validate client certificates instead of Pulp.

Global Repo Authentication

Repository authentication may be configured globally for all repositories in the
Pulp server or individually on a per repo basis. In the event that both are specified,
only the individual repository authentication check will take place.

Global repository authentication is enabled by placing the authentication
credentials under /etc/pki/pulp/content/. The following files are relevant:

	pulp-global-repo.ca

	CA certificate used to validate inbound consumer certificates. If the consumer’s
certificate cannot be validated by this CA, the consumer is automatically
rejected as being unauthorized.

	pulp-global-repo.cert

	Certificate to provide to consumers when they bind to repositories. If a
repository overrides global repository authentication at the repository level,
the certificate provided for the repository itself is used in place of this
file. This file is optional; if unspecified, bound consumers will need to
acquire a valid certificate for accessing the repository through other means.

	pulp-global-repo.key

	If the private key for the consumer certificate above is not included in the
certificate itself, it may be located in this file and will be sent to
bound consumers at the same time as the certificate.

Individual Repository Authentication

Individual repositories can be setup to do SSL authentication. This allows you
to use authentication on only specific repositories while leaving others
unprotected, or to have different credentials for some repositories than others.

The three certificates listed above can be passed to the repository create
or update command using the following options respectively:

	--feed-ca-cert

	--feed-cert

	--feed-key

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

Quick Start

Sync and Publish a Repo

The following command creates a new repository and sets its upstream feed URL to
that of the Pulp Project’s own repository. When we later run a synchronize operation,
the contents of the remote repository will be downloaded and stored in our new
repository.

$ pulp-admin rpm repo create --repo-id=zoo --relative-url=zoo \
--feed=http://repos.fedorapeople.org/repos/pulp/pulp/demo_repos/zoo/
Successfully created repository [pulp]

	--repo-id is required and must be unique.

	--relative-url is optional and was used here to make the path to the repository
friendlier.

	--feed is only required if you want to sync content from an external yum
repository, which in this case we do.

Now let’s sync the repository, which downloads all of the packages from the remote
repository and stores them in our new repository.

$ pulp-admin rpm repo sync run --repo-id=zoo
+--+
 Synchronizing Repository [zoo]
+--+

This command may be exited via ctrl+c without affecting the request.

Downloading metadata...
[\]
... completed

Downloading repository content...
[==] 100%
RPMs: 0/0 items
Delta RPMs: 0/0 items

... completed

Downloading distribution files...
[==] 100%
Distributions: 0/0 items
... completed

Importing errata...
[-]
... completed

Importing package groups/categories...
[-]
... completed

Task Succeeded

Initializing repo metadata
[-]
... completed

Publishing Distribution files
[-]
... completed

Publishing RPMs
[==] 100%
32 of 32 items
... completed

Publishing Delta RPMs
... skipped

Publishing Errata
[==] 100%
4 of 4 items
... completed

Publishing Comps file
[==] 100%
3 of 3 items
... completed

Publishing Metadata.
[-]
... completed

Closing repo metadata
[-]
... completed

Generating sqlite files
... skipped

Publishing files to web
[-]
... completed

Writing Listings File
[-]
... completed

Task Succeeded

Your repository is now available to browse at
https://localhost/pulp/repos/pulp_beta/ [https://localhost/pulp/repos/zoo/].
(adjust the hostname as necessary)

Consumer Setup and Use

On a Pulp consumer, once you have completed the installation process, the next
step is to register with the Pulp server. This allows the server to track what
is installed on the consumer and initiate actions on the consumer, such as package
install and system reboot.

Note

You must use login credentials for this command. Also note that this command must be run with root privileges.

$ sudo pulp-consumer register --consumer-id=con1
Enter password:
Consumer [con1] successfully registered

Now we can proceed with binding to a specific repository. Binding causes the Pulp
repository to be setup on the consumer as a normal yum repository. Bound repositories
are added to the file /etc/yum.repos.d/pulp.repo. Binding also allows the
server to initiate the installation of packages from that repository onto the
consumer. In this case, repository “zoo” has already been created on the Pulp
server and contains packages.

$ pulp-consumer rpm bind --repo-id=zoo
Bind tasks successfully created:

Task Id: 44d64951-857a-4985-bfd9-dd6ead841065

Task Id: 14782cfa-bdb7-4307-b2b1-f1a0b4331d66

Note

The binding request is asynchronous and does not complete until the server has
responded with binding information. This is why you see task IDs in the output
above. That said, it happens very quickly and will almost certainly be done
before you can type your next command.

At this point, the consumer is ready to install packages from the “zoo” repository.
Let’s initiate a package install from the server.

$ pulp-admin rpm consumer package install run --consumer-id=con1 -n wolf

Install task created with id [c89d4578-cb4e-451f-a87a-63272e77670e]

This command may be exited via ctrl+c without affecting the request.

Refresh Repository Metadata [OK]
Downloading Packages [OK]
Check Package Signatures [OK]
Running Test Transaction [OK]
Running Transaction [OK]

Install Succeeded

+--+
 Installed
+--+

Name: wolf
Version: 9.4
Arch: noarch
Repoid: zoo

Now the package “wolf” is installed on the consumer, and you can verify this by
running yum info wolf on the consumer.

Next Steps

This guide documents features and concepts that are specific to RPM support. The
Pulp User Guide has much more information about how to perform common operations
like search repositories, copy packages from one repository to another, etc.

Please check out the Recipes section for more advanced use cases.

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

Recipes

Mirror a Remote Repository

This is an example of creating a local mirror of a remote repository. In this
case, we will mirror the Foreman [http://theforeman.org/] repository.

$ pulp-admin rpm repo create --repo-id=foreman --feed=http://yum.theforeman.org/releases/1.1/el6/x86_64/ --relative-url=foreman
Successfully created repository [foreman]

	--repo-id is required and must be unique.

	--relative-url is optional and was used here to make the path to the repository
friendlier.

	--feed is only required if you want to sync content from an external yum
repository, which in this case we do.

$ pulp-admin rpm repo sync run --repo-id=foreman
+--+
 Synchronizing Repository [foreman]
+--+

This command may be exited by pressing ctrl+c without affecting the actual
operation on the server.

Downloading metadata...
[/]
... completed

Downloading repository content...
[==] 100%
RPMs: 98/98 items
Delta RPMs: 0/0 items

... completed

Downloading distribution files...
[==] 100%
Distributions: 0/0 items
... completed

Importing errata...
[-]
... completed

Importing package groups/categories...
[-]
... completed

Publishing packages...
[==] 100%
Packages: 98/98 items
... completed

Publishing distributions...
[==] 100%
Distributions: 0/0 items
... completed

Generating metadata
[\]
... completed

Publishing repository over HTTPS
[\]
... completed

	The full URL to a published repository is derived from the following information:

	
	The server name of the Pulp server. This should be the same hostname used in the
CN of the server’s SSL certificate, otherwise SSL verification on the client
will likely fail. The configuration of that certificate is handled by Apache,
typically in the ssl.conf configuration file.

	The Apache alias at which Pulp RPM repositories are hosted. This value is set
in the pulp_rpm.conf file located in Apache’s conf.d directory. By
default, this is set to /pulp/repos.

	The relative URL of the repository being published. This can be explicitly set
when the repository is created in Pulp. If it is not explicitly set, Pulp will
derive this value using the relative URL of the repository’s feed. For feedless
repositories, the repository ID is used.

Applying these rules to the above example repository, the published repository
can be found (adjusting the hostname as necessary) at:
https://localhost/pulp/repos/foreman/.

Had the relative URL not been explicitly set in the repository, the hosted URL
would be:
https://localhost/pulp/repos/releases/1.1/el6/x86_64/.

To keep the repository current, it might be desirable to synchronize it on a
regular schedule. The following command sets a schedule of synchronizing once
a day.

$ pulp-admin rpm repo sync schedules create -s '2012-12-15T00:00Z/P1D' --repo-id=foreman
Schedule successfully created

Use a Proxy

Using a web proxy is fairly straight-forward. Proxy details are specified when
creating the repository, as in this example:

$ pulp-admin rpm repo create --repo-id=foo --proxy-host=http://bar.net \
--proxy-port=1234 --proxy-user=me --proxy-pass=letmein \
--feed=http://bar.net/repos/foo/
Successfully created repository [foo]

Warning

The password is stored in clear text and may be presented in clear text by the
command line utility. Do not use sensitive credentials for your web proxy.

Alternatively, Pulp can be configured to use a specific proxy for all yum
repositories by adding the following settings to
/etc/pulp/server/plugins.conf.d/yum_importer.json

{
 "proxy_host" : "<url>",
 "proxy_port" : <port>,
 "proxy_username" : "<username>",
 "proxy_password" : "<password>"
}

Note

This is a JSON file, so care must be taken when editing it.

Sync a Protected Repo

Syncing against a protected repository requires specifying some SSL certificates.
The pulp-admin rpm repo create command does a good job of documenting these
options, but the below example may help pull it all together.

This example was run on a RHEL6 server with an active subscription.

Note that you will need to adjust the file names for the certificate and key in
/etc/pki/ to match your own. Also note that this needs to run as root to
have permission to read the certificates and key.

$ sudo pulp-admin rpm repo create --repo-id=rhel-6-server \
--feed=https://cdn.redhat.com/content/dist/rhel/server/6/6Server/x86_64/os \
--feed-ca-cert=/etc/rhsm/ca/redhat-uep.pem --feed-cert=/etc/pki/entitlement/8435737662014631983.pem \
--feed-key=/etc/pki/entitlement/8435737662014631983-key.pem
Successfully created repository [rhel6server]

$ pulp-admin rpm repo sync run --repo-id=rhel6server
+--+
 Synchronizing Repository [rhel6server]
+--+

This command may be exited by pressing ctrl+c without affecting the actual
operation on the server.

Downloading metadata...
[/]
... completed

Downloading repository content...
[] 1%
RPMs: 91/8769 items
Delta RPMs: 0/0 items

If you would prefer not to use the entitlement certificates from an existing
RHEL installation, you can also acquire the entitlement certificate, key, and
CA certificate [https://access.redhat.com/management/ca_cert/download] using
the Red Hat Customer Portal. To retrieve the entitlement certificate and key,
you will need to view your
Registered Consumers [https://access.redhat.com/management/consumers/]. On
that page, there is a “Systems” tab, and in that tab there is a link to
Register a system [https://access.redhat.com/management/consumer/consumers/create/system].
Fill out the form with the relevant details for your Pulp Server, and click
“Register”. Once you have registered your system, you must now attach a
subscription to it with the “Attach a subscription” link on the page for the
newly registered system. In the pop up, select the subscriptions that you want
to apply to the Pulp Server and click “Attach selected”. You will now see the
selected subscriptions in the “Attached Subscriptions” table, and you can use
the “Download” link from the “Entitlement Certificate” column to retrieve the
certificate and key, bundled into a single file. You can pass that same file as
the --feed-cert and --feed-key options when you create the repo.

It is also possible to sync a repo that is protected via basic authentication.
The --basicauth-user and --basicauth-pass options are used for this
during repo creation or update.

Export Repositories and Repository Groups

If you have a Pulp server that does not have access to the Internet, it is possible
to use a second Pulp server, which does have Internet access, to retrieve repositories and
repository updates for your disconnected server. The full list of options can be seen by
running pulp-admin rpm repo export run --help.

The general workflow is as follows:

	Use the connected Pulp server to sync one or more repositories.

	Export these repositories to ISOs: pulp-admin rpm repo export run --repo-id=demo-repo

$ pulp-admin rpm repo export run --repo-id=demo-repo
+--+
 Publishing Repository [demo-repo]
+--+

This command may be exited by pressing ctrl+c without affecting the actual
operation on the server.

Which, if publishing over HTTP, could be found at
http://localhost/pulp/exports/repo/demo-repo/
(adjust hostname and repo-id as necessary.)

	Transport the ISOs to the disconnected Pulp server

	Mount each ISO and copy its contents to a directory on the disconnected Pulp server

$ cp -r /path/to/mounted/iso1/ /path/to/extracted/content
$ cp -r /path/to/mounted/iso2/ /path/to/extracted/content

	On the disconnected Pulp server, create a new repository with the feed pointing at
the directory containing the ISO contents:
pulp-admin rpm repo create --repo-id=demo-repo --feed=file:///path/to/extracted/content/

	Sync the repository using pulp-admin rpm repo sync run --repo-id=demo-repo

The workflow for exporting repository groups is quite similar. The command is
pulp-admin rpm repo group export run. Repository groups can contain any content type,
but this command will only export the yum repositories.

It is also possible to export all rpms and errata associated with a repository in a given
time frame using the --start-date and --end-date options. This is helpful if you have
already exported the repository and would like to only export updates. Be aware that since this
does not export package groups or categories, any updates to these will not be reflected on the
disconnected Pulp server. There is currently no support in the pulp-admin command-line utility
for uploading these incremental updates back into Pulp; you must use the REST API for these uploads.

Warning

It is very important keep track of the last time you performed an incremental export.
If you fail use the correct date range, some dependencies may be missing from the export.
It is recommended that you overlap the date ranges to be safe.

The default behavior is to create a set of ISO images and publish them over
HTTP or HTTPS to /pulp/exports/repo/<repo-id>/, or if publishing a repo
group, /pulp/exports/repo_group/<group-id>/. The default image size will
fit on a DVD (4308MB). However, if you would prefer to use an external hard drive
to transport the repositories, you can use the --export-dir option, which will
export the repository to a directory on the Pulp server rather than creating a set
of ISOs and publishing them over HTTP or HTTPS. If you choose this option, simply
skip step 4.

Errata

Searching for Errata

Pulp has a very powerful search interface that can be used to search content
units. In this recipe, you will learn how to use it to search for errata that
have been issued on or after a date, and also how to search for errata by type.
Let’s start by defining a repo cleverly called repo with a demo feed:

$ pulp-admin rpm repo create --repo-id=repo \
 --feed=http://repos.fedorapeople.org/repos/pulp/pulp/demo_repos/pulp_unittest/ \
 --relative-url=repo
Successfully created repository [repo]

Now let’s sync the repo so it has some errata for us to search:

$ pulp-admin rpm repo sync run --repo-id=repo

The contents of our example repository are from a few years ago, but it includes
errata over a span of a few years. Suppose that I wanted to know which errata
were issued on or after December 1, 2009. For this example, I will include the
--fields=id flag to limit the output to just be the IDs of the errata, but
you can season that flag to taste, or omit it if you want to see everything:

$ pulp-admin rpm repo content errata --filters='{"issued": {"$gte": "2009-12-01"}}' \
 --repo-id=repo --fields=id
Id: RHBA-2010:0010

Id: RHBA-2010:0205

Id: RHBA-2010:0206

Id: RHBA-2010:0222

Id: RHBA-2010:0251

Id: RHBA-2010:0281

Id: RHBA-2010:0282

Id: RHBA-2010:0294

Id: RHBA-2010:0418

We already talked about the --fields=id flag, so let’s focus on the
--filters='{"issued": {"$gte": "2009-12-01"}}' flag. pulp-admin
has some built in simple filtering capabilities, but they aren’t as powerful as
the filtering we can achieve with the --filters flag. We can use this flag
to pass a JSON filter [http://docs.mongodb.org/manual/reference/operators/]
to MongoDB to have it apply any arbitrary filter we want. In our case, we want
to look for the “issued” field of our errata being greater than or equal to
2009-12-01.

There are three different types of errata: Security Advisories (RHSAs), Bug Fix
Advisories (RHBAs), and Product Enhancement Advisories (RHEAs). Suppose we
wanted to know which RHSAs were available in a repo. We would run this command:

$ pulp-admin rpm repo content errata --match type=security \
 --repo-id=repo --fields=id
Id: RHSA-2007:0114

Id: RHSA-2007:0323

Id: RHSA-2008:0194

Id: RHSA-2008:0892

Id: RHSA-2009:0003

Id: RHSA-2009:0382

Id: RHSA-2009:1472

For this command we asked Pulp to find errata that had their type field set to
“security”. We can also find these by applying a regex to the id field:

$ pulp-admin rpm repo content errata \
 --match id=^RHSA --repo-id=repo

In this example, we asked MongoDB to look for errata that had an id that
matched our supplied
Regular Expression [http://docs.mongodb.org/manual/reference/operators/#_S_regex].
The carat at the start of our regular expression will match the beginning of the
id field, and we used RHSA after that to make sure the ID was an RHSA and
not an RHBA or RHEA.

Copy Errata From One Repository to Another

The pulp-admin utility can be used to copy errata from one repository to
another. In this recipe, we will create two repositories, sync one with a
sample upstream repository, and then copy an erratum from it to the other.
Let’s begin by creating our two repositories, repo_1 and repo_2:

$ pulp-admin rpm repo create --repo-id=repo_1 \
 --feed=http://repos.fedorapeople.org/repos/pulp/pulp/demo_repos/pulp_unittest/ \
 --relative-url=repo_1
Successfully created repository [repo_1]

$ pulp-admin rpm repo create --repo-id=repo_2 \
 --relative-url=repo_2
Successfully created repository [repo_2]

Next, we will sync repo_1, so that it will have some errata that we can
copy:

$ pulp-admin rpm repo sync run --repo-id=repo_1
+--+
Synchronizing Repository [repo_1]
+--+

This command may be exited by pressing ctrl+c without affecting the actual
operation on the server.

Downloading metadata...
[|]
... completed

Downloading repository content...
[==] 100%
RPMs: 3/3 items
Delta RPMs: 0/0 items
... completed

Downloading distribution files...
[==] 100%
Distributions: 0/0 items
... completed

Importing errata...
[-]
... completed

Importing package groups/categories...
[-]
... completed

Publishing packages...
[==] 100%
Packages: 3/3 items
... completed

Publishing distributions...
[==] 100%
Distributions: 3/3 items
... completed

Generating metadata
[/]
... completed

Publishing repository over HTTPS
[-]
... completed

Publishing repository over HTTP
[-]
... skipped

Now repo_1 has errata and other units, and repo_2 has no units at all.
Suppose that we would like to pull all of the security updates from repo_1
to repo_2. We can determine which errata are RHSA by using a match filter:

$ pulp-admin rpm repo content errata --match type=security \
 --repo-id=repo_1 --fields=id
Id: RHSA-2007:0114

Id: RHSA-2007:0323

Id: RHSA-2008:0194

Id: RHSA-2008:0892

Id: RHSA-2009:0003

Id: RHSA-2009:0382

Id: RHSA-2009:1472

Running that same command for repo_2 doesn’t show any errata, so let’s use
the unit copy command to bring these RHSAs over, but not the RHBAs or the
RHEAs:

$ pulp-admin rpm repo copy errata --match type=security \
 --from-repo-id=repo_1 --to-repo-id=repo_2
Progress on this task can be viewed using the commands under "repo tasks".

Note

Use the –recursive flag to copy any dependencies of units being copied from the source repo
into the destination repo.

We can inspect the progress of this operation using
pulp-admin repo tasks list --repo-id=repo_1. There are only a few
errata to be copied here so it should be complete shortly. Now we can inspect
the contents of repo_2:

$ pulp-admin rpm repo content errata --repo-id=repo_2 --fields=id
Id: RHSA-2007:0114

Id: RHSA-2007:0323

Id: RHSA-2008:0194

Id: RHSA-2008:0892

Id: RHSA-2009:0003

Id: RHSA-2009:0382

Id: RHSA-2009:1472

Create Your Own Errata

You can also create your own errata on a repo using the Pulp client. In order to
do this, you will need to create a few
CSV [http://en.wikipedia.org/wiki/Comma-separated_values] files and provide a
few data fields to the pulp-admin client.

Let’s begin by making a repo and syncing it:

$ pulp-admin rpm repo create --repo-id=repo \
 --feed=http://repos.fedorapeople.org/repos/pulp/pulp/demo_repos/pulp_unittest/
Successfully created repository [repo]

$ pulp-admin rpm repo sync run --repo-id=repo

Now let’s create a new errata that references one of the test packages from this
repo called pulp-test-package. The first file that we will need to provide is a
references CSV file. This CSV should have four columns: href, type, id, and
description, giving a link to the referenced bug report or CVE, the type of the
reference, the ID of the reference, and a brief description. Here is an example,
named references.csv, wherein you can see that pulp-test-package-0.2.1 has some
serious issues:

http://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=123456,bugzilla,123456,pulp-test-package-0.2.1 prints mean error messages to users
http://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=654321,bugzilla,654321,pulp-test-package-0.2.1 causes users' machines to run out of bits/bytes/whatever. The users must wait until the next supply comes next week

Next, we will need to provide a list of packages that the errata applies to.
This CSV provides a list of packages that address the issue that the errata
tracks with the following columns: name, version, release, epoch, arch,
filename, checksum, checksum_type, and src. For example, let’s create
package_list.csv for this:

pulp-test-package,0.3.1,1.fc11,0,x86_64,pulp-test-package-0.3.1-1.fc11.x86_64.rpm,6bce3f26e1fc0fc52ac996f39c0d0e14fc26fb8077081d5b4dbfb6431b08aa9f,sha256,pulp-test-package-0.3.1-1.fc11.src.rpm

Now that we have these two files, we can create our new errata like so:

$ pulp-admin rpm repo uploads erratum --erratum-id=DEMO_ID_1 \
 --title="1: pulp-test-package bit conservation" \
 --description="1: pulp-test-package now conserves your precious bits." \
 --version=1 --release="el6" --type="bugzilla" --status="final" \
 --updated="`date`" --issued="`date`" --reference-csv=references.csv \
 --pkglist-csv=package_list.csv --from=pulp-list@redhat.com --repo-id=repo
+--+
 Unit Upload
+--+

Extracting necessary metadata for each request...
... completed

Creating upload requests on the server...
[==] 100%
Initializing upload
... completed

Starting upload of selected units. If this process is stopped through ctrl+c,
the uploads will be paused and may be resumed later using the resume command or
canceled entirely using the cancel command.

Importing into the repository...
... completed

Deleting the upload request...
... completed

And now we are able to see that our errata is part of the repo:

$ pulp-admin rpm repo content errata --repo-id=repo --match type=bugzilla
Description: 1: pulp-test-package now conserves your precious bits.
From Str: pulp-list@redhat.com
Id: DEMO_ID_1
Issued: Wed Dec 19 12:19:18 EST 2012
Pkglist:
 Name: el6
 Packages:
 Arch: x86_64
 Epoch: 0
 Filename: pulp-test-package-0.3.1-1.fc11.x86_64.rpm
 Name: pulp-test-package
 Release: 1.fc11
 Src: pulp-test-package-0.3.1-1.fc11.src.rpm
 Sums: 6bce3f26e1fc0fc52ac996f39c0d0e14fc26fb8077081d5b4dbfb6431b08aa9f
 Type: sha256
 Version: 0.3.1
 Short:
Pushcount: 1
Reboot Suggested: False
References:
 Href: http://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=123456
 Id: 123456
 Title: pulp-test-package-0.2.1 prints mean error messages to users
 Type: bugzilla
 Href: http://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=654321
 Id: 654321
 Title: pulp-test-package-0.2.1 causes users' machines to run out of
 bits/bytes/whatever. The users must wait until the next supply comes
 next week
 Type: bugzilla
Release: el6
Rights: None
Severity: None
Solution: None
Status: final
Summary: None
Title: 1: pulp-test-package bit conservation
Type: bugzilla
Updated: Wed Dec 19 12:19:18 EST 2012
Version: 1

Package Groups

Create Your Own Package Groups

You can easily define your own package groups with the pulp_admin
utility. Let’s create and sync a repo:

$ pulp-admin rpm repo create --repo-id=repo_1 \
 --feed=http://repos.fedorapeople.org/repos/pulp/pulp/demo_repos/pulp_unittest/
Successfully created repository [repo_1]

$ pulp-admin rpm repo sync run --repo-id=repo_1

Now let’s build a package group for our demo repo test files:

$ pulp-admin rpm repo uploads group --repo-id=repo_1 --group-id=pulp_test \
 --name="Pulp Test" --description="A package group of Pulp test files." \
 --mand-name=pulp-dot-2.0-test --mand-name=pulp-test-package
+--+
 Unit Upload
+--+

Extracting necessary metadata for each request...
... completed

Creating upload requests on the server...
[==] 100%
Initializing upload
... completed

Starting upload of selected units. If this process is stopped through ctrl+c,
the uploads will be paused and may be resumed later using the resume command or
canceled entirely using the cancel command.

Importing into the repository...
... completed

Deleting the upload request...
... completed

We can see that the package group is now part of our repo:

$ pulp-admin rpm repo content group --repo-id=repo_1 --match id=pulp_test
Conditional Package Names:
Default: False
Default Package Names: None
Description: A package group of Pulp test files.
Display Order: 0
Id: pulp_test
Langonly: None
Mandatory Package Names: pulp-dot-2.0-test, pulp-test-package
Name: Pulp Test
Optional Package Names: None
Repo Id: repo_1
Translated Description:
Translated Name:
User Visible: False

Copying Package Groups Between Repos

Package groups can be copied from one repository to another, which will bring
along the packages it references as well. For this example, we will assume
you’ve performed the steps from the Create Your Own Package Groups section.

We’ll begin by creating a new empty repo, repo_2:

$ pulp-admin rpm repo create --repo-id=repo_2
Successfully created repository [repo_2]

And now we will copy our package group, pulp_test from repo_1 to
repo_2:

$ pulp-admin rpm repo copy group --match id=pulp_test --from-repo-id=repo_1 \
 --to-repo-id=repo_2
Progress on this task can be viewed using the commands under "repo tasks".

Note

Use the –recursive flag to copy any dependencies of units being copied from the source repo
into the destination repo.

This task should complete fairly quickly since there isn’t much to do with our
tiny example repo, but we can check on the progress to verify that it is
finished:

$ pulp-admin repo tasks list --repo-id=repo_1
+--+
 Tasks
+--+

Operations: associate
Resources: repo_2 (repository), repo_1 (repository)
State: Successful
Start Time: 2012-12-20T16:26:44Z
Finish Time: 2012-12-20T16:26:44Z
Result: N/A
Task Id: 9f1d0146-cc28-47a8-b0f4-b1b49f84e058

Now we can inspect repo_2 and see that the package group and its RPMs have
been copied there:

$ pulp-admin rpm repo content group --repo-id=repo_2
Conditional Package Names:
Default: False
Default Package Names: None
Description: A package group of Pulp test files.
Display Order: 0
Id: pulp_test
Langonly: None
Mandatory Package Names: pulp-dot-2.0-test, pulp-test-package
Name: Pulp Test
Optional Package Names: None
Repo Id: repo_1
Translated Description:
Translated Name:
User Visible: False

$ pulp-admin rpm repo content rpm --repo-id=repo_2
Arch: x86_64
Buildhost: gibson
Checksum: 435d92e6c09248b501b8d2ae786f92ccfad69fab8b1bc774e2b66ff6c0d83979
Checksumtype: sha256
Description: Test package to see how we deal with packages with dots in the
 name
Epoch: 0
Filename: pulp-dot-2.0-test-0.1.2-1.fc11.x86_64.rpm
License: MIT
Name: pulp-dot-2.0-test
Provides: [[u'pulp-dot-2.0-test(x86-64)', u'EQ', [u'0', u'0.1.2',
 u'1.fc11']], [u'pulp-dot-2.0-test', u'EQ', [u'0', u'0.1.2',
 u'1.fc11']], [u'config(pulp-dot-2.0-test)', u'EQ', [u'0',
 u'0.1.2', u'1.fc11']]]
Release: 1.fc11
Requires:
Vendor:
Version: 0.1.2

Arch: x86_64
Buildhost: gibson
Checksum: 6bce3f26e1fc0fc52ac996f39c0d0e14fc26fb8077081d5b4dbfb6431b08aa9f
Checksumtype: sha256
Description: Test package. Nothing to see here.
Epoch: 0
Filename: pulp-test-package-0.3.1-1.fc11.x86_64.rpm
License: MIT
Name: pulp-test-package
Provides: [[u'pulp-test-package(x86-64)', u'EQ', [u'0', u'0.3.1',
 u'1.fc11']], [u'pulp-test-package', u'EQ', [u'0', u'0.3.1',
 u'1.fc11']], [u'config(pulp-test-package)', u'EQ', [u'0',
 u'0.3.1', u'1.fc11']]]
Release: 1.fc11
Requires:
Vendor:
Version: 0.3.1

Package Categories

Create Your Own Package Categories

You can also define your own package categories with the pulp_admin
utility. Let’s create and sync a repo:

$ pulp-admin rpm repo create --repo-id=repo_1 \
 --feed=http://repos.fedorapeople.org/repos/pulp/pulp/demo_repos/pulp_unittest/
Successfully created repository [repo_1]

$ pulp-admin rpm repo sync run --repo-id=repo_1

Now let’s build two package groups for our demo repo test files:

$ pulp-admin rpm repo uploads group --repo-id=repo_1 \
 --group-id=pulp_test_packages --name="Pulp Test Packages" \
 --description="A package group of Pulp test files." \
 --mand-name=pulp-dot-2.0-test --mand-name=pulp-test-package

$ pulp-admin rpm repo uploads group --repo-id=repo_1 \
 --group-id=pulp_dotted_name_packages --name="Pulp Dotted Name Packages" \
 --description="A group of packages that have dots in their names." \
 --mand-name=pulp-dot-2.0-test

And now we can easily create a package category that is a collection of these
two groups:

$ pulp-admin rpm repo uploads category --repo-id=repo_1 \
 --category-id=example_category --name="Example Category" \
 --description="An Example Category" --group=pulp_test_packages \
 --group=pulp_dotted_name_packages
+--+
 Unit Upload
+--+

Extracting necessary metadata for each request...
... completed

Creating upload requests on the server...
[==] 100%
Initializing upload
... completed

Starting upload of selected units. If this process is stopped through ctrl+c,
the uploads will be paused and may be resumed later using the resume command or
canceled entirely using the cancel command.

Importing into the repository...
... completed

Deleting the upload request...
... completed

The package category details can be listed as well:

$ pulp-admin rpm repo content category --repo-id=repo_1 \
 --match id=example_category
Description: An Example Category
Display Order: 0
Id: example_category
Name: Example Category
Packagegroupids: pulp_test_packages, pulp_dotted_name_packages
Repo Id: repo_1
Translated Description:
Translated Name:

Copying Package Categories

Like package groups, categories can be copied between repos, which will bring
along their groups and packages. Assuming you’ve performed the steps from the
Create Your Own Package Categories section, let’s begin by creating an empty
second repo:

$ pulp-admin rpm repo create --repo-id=repo_2
Successfully created repository [repo_2]

Now let’s copy example_category from repo_1 to repo_2:

$ pulp-admin rpm repo copy category --match id=example_category \
 --from-repo-id=repo_1 --to-repo-id=repo_2
Progress on this task can be viewed using the commands under "repo tasks".

Note

Use the –recursive flag to copy any dependencies of units being copied from the source repo
into the destination repo.

We should check out the task to see when it’s done with the repo tasks command:

$ pulp-admin repo tasks list --repo-id=repo_1
+--+
 Tasks
+--+

Operations: associate
Resources: repo_2 (repository), repo_1 (repository)
State: Successful
Start Time: 2012-12-20T20:41:12Z
Finish Time: 2012-12-20T20:41:12Z
Result: N/A
Task Id: b5139389-b985-40be-8ee5-10bc626a124a

And now we can see that repo_2 has the category, groups, and RPMs:

$ pulp-admin rpm repo content category --repo-id=repo_2
Description: An Example Category
Display Order: 0
Id: example_category
Name: Example Category
Packagegroupids: pulp_test_packages, pulp_dotted_name_packages
Repo Id: repo_1
Translated Description:
Translated Name:

$ pulp-admin rpm repo content group --repo-id=repo_2
Conditional Package Names:
Default: False
Default Package Names: None
Description: A group of packages that have dots in their names.
Display Order: 0
Id: pulp_dotted_name_packages
Langonly: None
Mandatory Package Names: pulp-dot-2.0-test
Name: Pulp Dotted Name Packages
Optional Package Names: None
Repo Id: repo_1
Translated Description:
Translated Name:
User Visible: False

Conditional Package Names:
Default: False
Default Package Names: None
Description: A package group of Pulp test files.
Display Order: 0
Id: pulp_test_packages
Langonly: None
Mandatory Package Names: pulp-dot-2.0-test, pulp-test-package
Name: Pulp Test Packages
Optional Package Names: None
Repo Id: repo_1
Translated Description:
Translated Name:
User Visible: False

$ pulp-admin rpm repo content rpm --repo-id=repo_2
Arch: x86_64
Buildhost: gibson
Checksum: 435d92e6c09248b501b8d2ae786f92ccfad69fab8b1bc774e2b66ff6c0d83979
Checksumtype: sha256
Description: Test package to see how we deal with packages with dots in the
 name
Epoch: 0
Filename: pulp-dot-2.0-test-0.1.2-1.fc11.x86_64.rpm
License: MIT
Name: pulp-dot-2.0-test
Provides: [[u'pulp-dot-2.0-test(x86-64)', u'EQ', [u'0', u'0.1.2',
 u'1.fc11']], [u'pulp-dot-2.0-test', u'EQ', [u'0', u'0.1.2',
 u'1.fc11']], [u'config(pulp-dot-2.0-test)', u'EQ', [u'0',
 u'0.1.2', u'1.fc11']]]
Release: 1.fc11
Requires:
Vendor:
Version: 0.1.2

Arch: x86_64
Buildhost: gibson
Checksum: 6bce3f26e1fc0fc52ac996f39c0d0e14fc26fb8077081d5b4dbfb6431b08aa9f
Checksumtype: sha256
Description: Test package. Nothing to see here.
Epoch: 0
Filename: pulp-test-package-0.3.1-1.fc11.x86_64.rpm
License: MIT
Name: pulp-test-package
Provides: [[u'pulp-test-package(x86-64)', u'EQ', [u'0', u'0.3.1',
 u'1.fc11']], [u'pulp-test-package', u'EQ', [u'0', u'0.3.1',
 u'1.fc11']], [u'config(pulp-test-package)', u'EQ', [u'0',
 u'0.3.1', u'1.fc11']]]
Release: 1.fc11
Requires:
Vendor:
Version: 0.3.1

Comps

Upload comps.xml file

This is an example of creating a repo and uploading a comps.xml file into it.

$ pulp-admin rpm repo create --repo-id comps-repo

Successfully created repository [comps-repo]

$ pulp-admin rpm repo uploads comps --repo-id comps-repo --file ~/sample-comps.xml

+--+
 Unit Upload
+--+

Extracting necessary metadata for each request...
[==] 100%
Analyzing: sample-comps.xml
... completed

Creating upload requests on the server...
[==] 100%
Initializing: sample-comps.xml
... completed

Starting upload of selected units. If this process is stopped through ctrl+c,
the uploads will be paused and may be resumed later using the resume command or
canceled entirely using the cancel command.

Uploading: sample-comps.xml
[==] 100%
8407/8407 bytes
... completed

Importing into the repository...
This command may be exited via ctrl+c without affecting the request.

[\]
Running...

Task Succeeded

Deleting the upload request...
... completed

Now let’s list the repo and check its content.

$ pulp-admin rpm repo list --repo-id comps-repo

+--+
 RPM Repositories
+--+

Id: comps-repo
Display Name: comps-repo
Description: None
Content Unit Counts:
 Package Category: 2
 Package Environment: 1
 Package Group: 3

Chili

	2 lb. Ground Beef

	Chili Powder

	Garlic

	1 Large Onion

	2 Cans of Tomatoes

	4 Cans of beans (mix & match!)

	Habanero Peppers (be careful)

	Jalapeño Peppers

	2 Bell Peppers

Put the meat, onion, powder, and tomatoes in a crock pot. Chop up all the vegetables. Put half the
vegetables and put those in the crock pot, save the rest for later in the fridge. Turn the crock pot
on for several (4-10) hours. After it is done, stir in the remaining vegetables and beans. Cook on
high for 30 minutes.

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

Features

RPM Support includes a number of features that are not found in the generic
Pulp platform, the most important of which are described below.

Types

Pulp RPM supports the following types:

	RPM

	DRPM

	SRPM

	Erratum

	Distribution

	Package Group

	Package Category

Errata

Red Hat [http://www.redhat.com] provides security, bug fix, and enhancement
updates for supported Red Hat Enterprise products. These security updates are
provided through the Red Hat CDN, and are described by errata. Pulp supports
these errata types with a number of related features.

Errata are synchronized from upstream repositories. Errata can also be
copied from one repository to another.
Administrators can also upload their own errata to
a repository. Please see the Recipes documentation to learn how to
perform these operations.

Protected Repositories

Red Hat protects its repositories with SSL-based
entitlement certificates. Pulp supports both ends of that operation:

Each Pulp repository can be configured with a client entitlement certificate and
key that it will use to retrieve packages from a remote repository. This is only
required when the remote repository is protected, such as when connecting to the
Red Hat CDN.

Pulp can be supplied a CA certificate that it will use to verify the authenticity
of client certificates when clients try to access Pulp-hosted repositories. This
is only required when you want to protect a Pulp-hosted repository. Repositories
can have these protection settings specified individually, or they can be set
globally for all RPM-related repositories.

For each Pulp-hosted repository that is protected, a consumer certificate can be
supplied that will be distributed to consumers when they bind. That certificate
will allow them to access the protected repository.

Export

In addition to publishing repositories as normal yum repositories over HTTP or
HTTPS, it is also possible to export repositories to ISO images, which are published
over HTTP or HTTPS, or to a directory on the Pulp server. Large repositories may be
split into several ISOs.

Proxy Settings

When retrieving packages from a remote repository, Pulp can use a proxy and can
supply basic authentication credentials to that proxy.

Bandwidth Throttling

When downloading packages from a remote source, Pulp can limit the speed at which
data is transferred. The number of downloader threads can also be specified.

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

ISOs

New in Pulp RPM 2.2.0 is support in the admin client extensions for ISO content. The ISO client
supports the following features around ISO repositories:

Features

	Create repositories

	Update repositories

	Delete repositories

	List repositories

	Copy ISOs between repositories

	Search for ISOs within a given repository

	Remove ISOs from a repository

	Upload ISOs to a repository

	Sync an ISO repository with a ISO feed

	Publish ISO repositories

We will not endeavor to document all of these feature thoroughly here, as they are pretty well
documented in the help text of the admin client’s new iso repo section:

$ pulp-admin iso repo

Recipes

Syncing an ISO Repository

In this recipe, we will create an ISO repository with an upstream feed, and we will synchronize it.

Let’s begin by creating the repository:

$ pulp-admin iso repo create --repo-id example --feed http://pkilambi.fedorapeople.org/test_file_repo/ --serve-http true
Successfully created repository [example]

In this command, we’ve created an ISO repository that syncs with the given feed URL, and we’ve also
instructed it to publish over HTTP.

Note

The ISO repository can only sync against feeds that publish a manifest file called
PULP_MANIFEST. Most ISO collections on the Internet do not publish a PULP_MANIFEST file
alongside their ISOs, and those collections cannot be consumed by the ISO Importer. The importer
will append a trailing slash to the --feed setting if it doesn’t already have one, and then
will perform a URL join with the feed and the name PULP_MANIFEST to determine where it
should look for the manifest. Please ensure that a PULP_MANIFEST is available at the URL you
give to the --feed setting here.

Now that we’ve created the repository, let’s sync it as well:

$ pulp-admin iso repo sync run --repo-id example
+--+
 Synchronizing Repository [example]
+--+

This command may be exited by pressing ctrl+c without affecting the actual
operation on the server.

Downloading the Pulp Manifest...
The Pulp Manifest was downloaded successfully.

Downloading 3 ISOs...
[==] 100%
ISOs: 3/3 Data: 10.2 MB/10.2 MB Avg: 1.7 MB/s

Successfully downloaded 3 ISOs.

The repository was successfully published.

ISO repositories auto-publish by default, so you can now browse to
http://<your-server>/pulp/isos/example/ and view the downloaded ISOs.

Uploading ISOs to a Repository

You can also upload your own ISOs to a repository. Let’s begin by creating a repository:

$ pulp-admin iso repo create --repo-id uploads --serve-http true
Successfully created repository [uploads]

We didn’t give this one a feed, but we still instructed it to publish over HTTP. Let’s upload a
file:

$ pulp-admin iso repo uploads upload --repo-id uploads -f ~/Desktop/Fedora-17-x86_64-Live-Desktop.iso
+--+
 Unit Upload
+--+

Extracting necessary metadata for each request...
[==] 100%
Analyzing: Fedora-17-x86_64-Live-Desktop.iso
... completed

Creating upload requests on the server...
[==] 100%
Initializing: Fedora-17-x86_64-Live-Desktop.iso
... completed

Starting upload of selected units. If this process is stopped through ctrl+c,
the uploads will be paused and may be resumed later using the resume command or
canceled entirely using the cancel command.

Uploading: Fedora-17-x86_64-Live-Desktop.iso
[==] 100%
676331520/676331520 bytes
... completed

Importing into the repository...
... completed

Deleting the upload request...
... completed

In this example, we uploaded the Fedora 17 ISO from our Desktop. We have not published the
repository, and Pulp repositories do not auto publish after uploads, so let’s now publish the
repository:

$ pulp-admin iso repo publish run --repo-id uploads
+--+
 Publishing Repository [uploads]
+--+

This command may be exited by pressing ctrl+c without affecting the actual
operation on the server.

The repository was successfully published.

You can now browse to http://<your-server>/pulp/isos/uploads/ and view the ISO you’ve uploaded, as
well as the generated PULP_MANIFEST file.

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

FAQ

Why is a checksum used to calculate uniqueness of RPMs?

Pulp only stores one copy of each unique unit, no matter how many repositories
that unit is associated with. Name-epoch-version-release-arch is not enough for
us to guarantee that two RPMs are in fact the same. For example, they may be
signed with different keys. Using the checksum to verify uniqueness is the best
way for Pulp to accomplish this.

It may not make sense to have two RPMs with the same NEVRA in the same
repository, but there might be a use case. As a rule, Pulp intentionally does
very little to enforce what makes a repository “valid”. Pulp gives you the
tools to manage collections of content, and you get to decide what constitutes
a valid collection for your use case.

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	User Guide

Troubleshooting

RPM with non UTF-8 fields results in error

Pulp does not support RPMs with non UTF-8 fields. When such an RPM is encountered, the following traceback will appear in the logs:

Content unit association failed [Unit [key={'name': 'ruby-zypptools', 'checksum': 'aa647a75db016962b72b8d7c1a328a2cf8cfd6a8d5827b58064ab383fde47231', 'epoch': '0', 'version': '0.2.0', 'release': '1.26', 'arch': 'x86_64', 'checksumtype': 'sha256'}] [type=rpm] [id=None]]
Traceback (most recent call last):
 File "/usr/lib/python2.6/site-packages/pulp/plugins/conduits/mixins.py", line 480, in save_unit
 unit.id = self._update_unit(unit, pulp_unit)
 File "/usr/lib/python2.6/site-packages/pulp/plugins/conduits/mixins.py", line 512, in _update_unit
 return self._add_unit(unit, pulp_unit)
 File "/usr/lib/python2.6/site-packages/pulp/plugins/conduits/mixins.py", line 534, in _add_unit
 unit_id = content_manager.add_content_unit(unit.type_id, None, pulp_unit)
 File "/usr/lib/python2.6/site-packages/pulp/server/managers/content/cud.py", line 35, in add_content_unit
 collection.insert(unit_doc)
 File "/usr/lib/python2.6/site-packages/pulp/server/db/connection.py", line 140, in retry
 return method(*args, **kwargs)
 File "/usr/lib64/python2.6/site-packages/pymongo/collection.py", line 357, in insert
 continue_on_error, self.__uuid_subtype), safe)
InvalidStringData: strings in documents must be valid UTF-8

If you experience this problem, contact the RPM maintainer and ask them to change non UTF-8 fields to UTF-8.

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

Technical Reference

	Yum Plugins
	Yum Types

	Yum Importer

	Yum Distributor

	Export Distributors
	Configuration Parameters

	ISO Plugins
	ISO Type

	ISO Importer

	ISO Distributor

	Sort Indexes
	Overview

	Pulp

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	Technical Reference

Yum Plugins

Yum Types

The following are the supported unit types for the Yum plugins. Each unit has a
unit type and metadata component. Unit type is a unique combination of fields,
and metadata constitutes the rest of the information associated to the unit. The order of the unit fields is
significant (and they are listed in order), as they together represent the unit key.

RPM

The RPM’s ID is rpm.

Unit Key

	name

	Name of the rpm package

	version

	Version number of the rpm package

	release

	Release of the rpm package

	epoch

	Epoch of the rpm package

	arch

	Arch of the rpm package

	checksumtype

	Checksum type used to generate the rpm checksum value

	checksum

	Checksum of the rpm package. This is the checksum of the package itself and not the rpm header checksum

Metadata

	filename

	Filename of the rpm package

	vendor

	The organization responsible for building this rpm package

	description

	A more verbose description of the rpm package

	buildhost

	The hostname of the build machine on which this package is built

	license

	The license information of the vendor

	requires

	Used to include required package dependencies for this rpm package

	provides

	Used to include rpm provides information

	repodata

	metadata xml snippets for rpm package. This includes primary, filelists and other xmls.
Example format: {"primary" : <primary_xml>, "filelist" : <filelist_xml>, "other" : <other_xml> }

SRPM

The SRPM’s ID is srpm.

Unit Key

	name

	Name of the srpm package

	version

	Version number of the srpm package

	release

	Release of the srpm package

	epoch

	Epoch of the srpm package

	arch

	Arch of the srpm package

	checksumtype

	Checksum type used to generate the srpm checksum value

	checksum

	Checksum of the srpm package. This is not the srpm header checksum

Metadata

	filename

	Filename of the srpm package

	vendor

	The organization responsible for building this srpm package

	description

	A more verbose description of the srpm package

	buildhost

	The hostname of the build machine on which this package is built

	license

	The license information of the vendor

	requires

	Used to include the required package dependencies for this srpm package

	provides

	Used to include srpm provides information

	repodata

	metadata xml snippets for srpm package. This includes primary, filelists and other xmls.
Example format: {"primary" : <primary_xml>, "filelist" : <filelist_xml>, "other" : <other_xml> }

DRPM

The DRPM’s ID is drpm.

Unit Key

	epoch

	Epoch of the rpm package

	version

	Version of the rpm package

	release

	Release of the rpm package

	filename

	filename of the drpm package

	checksum

	checksum of the drpm package

	checksumtype

	checksum type of the drpm package

Metadata

	size

	Size of the drpm

	sequence

	delta rpm sequence

	new_package

	new rpm package associated with the drpm package

Errata

The Erratum’s ID is erratum.

Unit Key

	id

	Erratum ID string

Metadata

	title

	Title of the erratum

	description

	A more detailed description of the erratum

	version

	Version of the erratum

	release

	Release of the erratum

	type

	Type of erratum. Valid values include “security”, “bugfix” and “enhancement” erratum

	status

	Status of the erratum. Example status: “final”

	updated

	Updated date of the erratum. Expected format “YYYY-MM-DD HH:MM:SS”

	issued

	Issued date of the erratum. Expected format “YYYY-MM-DD HH:MM:SS”

	severity

	severity of the erratum. Valid values include “Low”, “Moderate”, “High”

	references

	Reference information associated with this erratum

	pkglist

	Includes package information associated with this erratum

	rights

	Copyrights information associated for the erratum

	summary

	Detailed summary information for this erratum

	solution

	Detailed Solution information for this erratum

	from

	Typically an email address of the erratum issuer

	pushcount

	Number of times the erratum has been pushed

	reboot_suggested

	Flag indicating if this erratum is installed it will require a reboot of the system

Distribution

The distribution type’s ID is distribution.

Unit Key

	id

	ID of the distribution to be inventoried

	family

	Family of the distribution tree. For example: Red Hat Enterprise Linux

	variant

	Variant of the distribution tree. For example: Workstation

	version

	Version of the distribution tree. For example: 6Server

	arch

	Arch of the distribution tree. For example: x86_64

Metadata

	files

	Files associated with the distribution tree.

	timestamp

	The timestamp value as taken from the treeinfo file.

Package Group

The Package Group’s ID is package_group.

Unit Key

	id

	Package group ID

	repo_id

	Repository ID the package group ID is associated

Metadata

	name

	Name of the package group

	description

	Description of the package group

	default

	Include this package group by default. Valid values are True and False

	user_visible

	If the packagegroup should be visible when queried. Valid values are True and False

	langonly

	Language support groups are selected based on this option

	display_order

	Display order of the package group

	mandatory_package_names

	Mandatory package names to include in the package group

	conditional_package_names

	Conditional package names to include in the package group

	optional_package_names

	Optional package names to include in the package group

	default_package_names

	Default package names to include in the package group

Package Group Category

The Package Group Category’s ID is package_category.

Unit Key

	id

	Package group category ID

	repo_id

	Repository ID to which the package group category ID is associated

Metadata

	name

	Name of the package group category

	description

	Description of the package group category

	display_order

	Display order of the package group category

	packagegroupids

	Package group IDs associated with the package category

Package Group Environment

The Package Group Environment’s ID is package_environment.

Unit Key

	id

	Package group Environment ID

	repo_id

	Repository ID to which the package group category ID is associated

Metadata

	name

	Name of the package group environment

	translated_name

	Translated names of the package group environment. These are saved as a dictionary of locale
codes to translated names.
Example format: {"zh_TW" : 'KDE Plasma 工作空間'}

	description

	Description of the package group environment

	translated_description

	Translated descriptions of the package group environment. These are saved as a dictionary of locale
codes to translated descriptions.
Example format: {"ru" : 'KDE Plasma Workspaces - легко настраиваемый графический интерфейс пользователя, который содержит панель, рабочий стол, системные значки и виджеты рабочего стола, а также множество мощных приложений KDE.'}

	display_order

	Display order of the package group environment

	group_ids

	List of Package group IDs associated with the package environment
Example format: ['<group_id_1>','<group_id_2>']

	options

	Package group IDs and whether they are default options. The default flag must be set to either
True or False.
Example format: {"group" : <group_id>, "default" : True}

Note

Package_group, package_category and package environment elements can also be uploaded via comps file.
For more info see :ref:` upload_comps_xml_file`.

Yum Repo Metadata File

The Yum Repo Metadata File’s ID is yum_repo_metadata_file.

Unit Key

	repo_id

	The repository id that this metadata file belongs to

	data_type

	The type of the metadata file

Metadata

	checksum

	The checksum of the metadata file

	checksum_type

	The name of the algorithm used to calculate the checksum

Yum Importer

The Yum Importer can be used to sync an RPM repository with an upstream feed. The Yum Importer ID is
yum_importer.

Configuration Parameters

The following options are available to the yum importer configuration. All
configuration values are optional.

	feed

	URL where the repository’s content will be synchronized from. This can be either
an HTTP URL or a location on disk represented as a file URL.

	ssl_validation

	Indicates if the server’s SSL certificate is verified against the CA certificate
uploaded. The certificate should be verified against the CA for each client request.
Has no effect for non-SSL feeds. Valid values to this option are True and False;
defaults to True.

	ssl_ca_cert

	CA certificate string used to validate the feed source’s SSL certificate (for feeds
exposed over HTTPS). This option is ignored if ssl_verify is false.

	ssl_client_cert

	Certificate used as the client certificate when synchronizing the repository.
This is used to communicate authentication information to the feed source.
The value to this option must be the full path to the certificate. The specified
file may be the certificate itself or a single file containing both the certificate
and private key.

	ssl_client_key

	Private key to the certificate specified in ssl_client_cert, assuming it is not
included in the certificate file itself.

	proxy_host

	Indicates the URL to use as a proxy server when synchronizing this repository.

	proxy_port

	Port to connect to on the proxy server.

	proxy_username

	Username to pass to the proxy server if it requires authentication.

	proxy_password

	Password to use for proxy server authentication.

	basic_auth_username

	Username to pass to the feed URL’s server if it requires authentication.

	basic_auth_password

	Password to use for server authentication.

	query_auth_token

	An authorization token that will be added to every request made to the feed URL’s
server, which may be required to sync from repositories that use this method of
authorization (SLES 12, for example). This mechanism only supports syncing RPM
and deltarpm content.

	max_speed

	The maximum download speed in bytes/sec for a task (such as a sync);
defaults to None

	validate

	If True, as the repository is synchronized the checksum of each file will be
verified against the metadata’s expectation. Valid values to this option are
True and False; defaults to False.

	max_downloads

	Number of threads used when synchronizing the repository. This count controls
the download threads themselves and has no bearing on the number of operations
the Pulp server can execute at a given time; defaults to 1.

	remove_missing

	If true, as the repository is synchronized, old rpms will be removed. Valid values
to this option are True and False; defaults to False

	retain_old_count

	Count indicating how many old rpm versions to retain; defaults to 0. This count
only takes effect when remove_old option is set to True.

	skip

	List of content types to be skipped during the repository synchronization.
If unspecified, all types will be synchronized. Valid values are: rpm, drpm,
distribution, erratum; default is [].

	checksum_type

	checksum type to use for metadata generation; defaults to source checksum type of sha256.

	num_retries

	Number of times to retry before declaring an error during repository synchronization;
defaults to 2.

	copy_children

	Supported only as an override config option to a repository copy command, when
this option is False, the copy command will not attempt to locate and copy child
packages of errata, groups, or categories. For example, if it is already known
that all of a group’s RPMs are available in the destination repository, it can
save substantial time to set this to False and thus not have the importer verify
the presence of each. default is True.

	download_policy

	Set the download policy for a repository. By default this is immediate.
The other options are on_demand, where content is only downloaded when
a client requests it, and background, where the sync does not download
content, but after the sync completes a task is dispatched to download all
the content in the background. The content is available for client retrieval
during this time.

Yum Distributor

The Yum Distributor ID is yum_distributor.

Configuration Parameters

The following options are available to the Yum Distributor configuration.

Required Configuration Parameters

	http

	Flag indicating if the repository will be served over a non-SSL connection.
Valid values to this option are True and False.

	https

	Flag indicating if the repository will be served over an SSL connection. If
this is set to true, the https_ca option should also be specified to ensure
consumers bound to this repository have the necessary certificate to validate
the SSL connection. Valid values to this option are True and False.

	relative_url

	Relative path at which the repository will be served.

Optional Configuration Parameters

	protected

	Protect the published repository with repo authentication. Valid values to this
option are True and False.

	auth_cert

	Certificate that will be provided to consumers bound to this repository. This
certificate should contain entitlement information to grant access to this
repository, assuming the repository is protected. The value to this option must
be the full path to the certificate file. The file must contain both
the certificate itself and its private key.

	auth_ca

	CA certificate that was used to sign the certificate specified in auth-cert.
The server will use this CA to verify that the incoming request’s client certificate
is signed by the correct source and is not forged. The value to this option
must be the full path to the CA certificate file.

	https_ca

	CA certificate used to sign the SSL certificate the server is using to host
this repository. This certificate will be made available to bound consumers so
they can verify the server’s identity. The value to this option must be the
full path to the certificate.

	gpgkey

	GPG key used to sign RPMs in this repository. This key will be made available
to consumers to use in verifying content in the repository. The value to this
option must be the full path to the GPG key file.

	generate_sqlite

	Boolean flag to indicate whether or not sqlite files should be generated during
a repository publish. If unspecified it will not run due to the extra time needed to
perform this operation.

	checksum_type

	Checksum type to use for metadata generation

	skip

	List of content types to skip during the repository publish.
If unspecified, all types will be published. Valid values are: rpm, drpm,
distribution, errata, packagegroup.

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	Technical Reference

Export Distributors

There are two export distributors. One that exports a single repository, and another that exports
a repository group. The export distributors can export the repository or repository group as ISO
images, or to the directory of your choice as one or more yum repositories. The repository
distributor uses the ID export_distributor. The repository group distributor uses the ID
group_export_distributor. Exported repository ISOs will be published over HTTP or HTTPS at
the path /pulp/exports/repo/<repo-id>/, and exported repository group ISOs can be found at
/pulp/exports/repo_group/<group-id>/.

Configuration Parameters

The following options are available when configuring the export distributors.

Required Configuration Parameters

	http

	Flag indicating if the generated ISO will be served over a non-SSL connection.
Valid values to this option are True and False. This option is
required.

	https

	Flag indicating if the generated ISO will be served over an SSL connection.
Valid values to this option are True and False. This option is required.

Optional Configuration Parameters

	start_date

	Any content that was associated with the repository before this date will be excluded in the generated
ISO. Furthermore, the incremental export process exports errata and rpm metadata as JSON documents, and
no repo metadata is generated. The date should be in standard ISO8601 format. For example,
“2010-01-01T12:00:00”.

	end_date

	Any content that was associated with the repository after this date will be excluded in the generated
ISO. Furthermore, the incremental export process exports errata and rpm metadata as JSON documents,
and no repo metadata is generated. The date should be in standard ISO8601 format. For example,
“2010-01-01T12:00:00”.

	iso_prefix

	Prefix to be used in naming the generated ISO. The ISO will be named like this:
<prefix>-<timestamp>-<disc_number>.iso. The default is the repository or group id. The prefix
should only contain alphanumeric characters, dashes, and underscores.

	skip

	List of content types to skip during the creation of the ISO.
If unspecified, all types will be published. Valid values are: rpm, drpm, srpm,
distribution, package_group, and erratum.

	iso_size

	An integer, which is the maximum size of the generated ISO images in megabytes. In this case, 1
megabyte is 1 * 1024 * 1024 bytes. This will default to 4380 megabytes (4380 * 1024 * 1024 bytes,
to be exact) if it is not specified, which should fit on a single layer DVD.

	export_dir

	A full path to an export directory. If this option is specified, the repositories are not placed in
ISO images and published over HTTP or HTTPS. Instead, they are written to the export directory.
This option is useful if exporting to an external hard drive, for example.

	relative_url

	Relative path at which the repository will be served when exported. If this option is specified with

	export_dir, this will become the exported subdirectory name instead of the default, which is the

	repository id.

	manifest

	If this boolean is True, a PULP_MANIFEST file will be created in the directory where ISOs are
created. This allows the ISO importer to directly import what was published. Defaults to False.

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	Technical Reference

ISO Plugins

ISO Type

The ISO Plugins only have one type, the ISO. The ISO type’s ID is iso. The following is a descripton of the
ISO unit type that is used by the ISO plugins. The unit key is a combination of fields that can be used to
uniquely identify an ISO. ISOs have no additional metadata.

Unit Key

The unit key for the ISO type is an ordered list of name, checksum, and size. Each of
these attributes is described below.

	name

	This is the filename of the ISO.

	checksum

	This is the SHA-256 [http://en.wikipedia.org/wiki/SHA-2] checksum of the ISO file.

	size

	This is the size in bytes of the ISO file.

Metadata

ISOs have no additional metadata outside of the unit key.

ISO Importer

The ISO Importer can be used to sync an ISO repository with an upstream feed. The ISO Importer ID is
iso_importer.

An ISO repository is a fairly basic type of repository. It should be accessible via feed, and there
should be a file named PULP_MANIFEST available by appending /PULP_MANIFEST to the feed. For
example, if the feed is http://example.com/iso_repository, the ISO Importer will look for the manifest
at http://example.com/iso_repository/PULP_MANIFEST.

The manifest should be a CSV file with one row per ISO and these three columns, in order: name, checksum, and
size. The CSV file should not have a header row. The name should be the filenames of the ISO, and
the ISO should be accessible by appending the name to the feed. The checksum should be the
SHA-256 checksum of the ISO, and the size column should represent the size of the ISO in bytes. Here is an
example PULP_MANIFEST file:

example-1.0.iso,f02d5a72cd2d57fa802840a76b44c6c6920a8b8e6b90b20e26c03876275069e0,127346
example-1.1.iso,c7fbc0e821c0871805a99584c6a384533909f68a6bbe9a2a687d28d9f3b10c16,564830

Configuration Parameters

The following configuration parameters are all optional, and can be used to determine the behavior of the ISO
importer.

	feed

	This should be a string that represents the URL to an upstream ISO repository that you would like this importer
to be able to synchronize with. This parameter is optional because it is valid to create an ISO importer that
does not synchronize with an upstream feed, but is rather used to contain uploaded ISOs, or ISOs that are
copied from other repositories.This parameter becomes required if any of the other parameters are provided.

	max_speed

	This should be a numerical value, or a string that can be interpreted as a numerical value, representing the
maximum speed that the importer should be allowed to transfer ISOs at when synchronizing with feed.
It should be specified in units of bytes per second.

	max_downloads

	This should be an integer, or a string that can be interpreted as an integer, representing the maximum number
of concurrent downloads that should be performed when synchronizing with feed. This parameter defaults
to 5.

	proxy_password

	A string representing the password that should be used to authenticate with the proxy server specified in
proxy_host. This parameter is required if the proxy_username is provided.

	proxy_port

	An integer, or a string that can be interpreted as an integer, representing the port that should be used when
connecting to proxy_host.

	proxy_host

	A string representing the URL of the proxy server that should be used when synchronizing with feed.
This parameter is required if any of the other proxy setting are provided.

	proxy_username

	A string representing the username that should be used to authenticate with the proxy server at proxy_host.
This parameter is required if the proxy_password is provided.

	remove_missing

	This is a boolean value, or a string “True” or “False”. If set to “True”, the importer will remove any ISOs
that are currently in the local Pulp repository that are not found in the manifest at feed. If
“False”, missing ISOs will not be removed. This parameter defaults to False.

	ssl_ca_cert

	This is a string representing the SSL certificate authority certificate that should be used to validate the
server responding at feed. It should be provided in PEM format.

	ssl_client_cert

	This is a string representing the SSL client certificate that should be used to authenticate the importer to
the upstream repository at feed. It should be provided in PEM format. This parameter is required if the
ssl_client_key is provided.

	ssl_client_key

	This is a string representing the private key for ssl_client_cert. It should be provided in PEM format.

	ssl_validation

	This is a boolean that indicates whether we should verify the remote feed against the
given ssl_ca_cert.

	validate

	This is a boolean value, or a string “True” or “False”. If set to “True”, the importer will check the
downloaded ISOs’ file sizes and checksums against the expected values in the manifest when downloading from
feed. If “False”, no validation will be performed. This parameter defaults to True.

ISO Distributor

The ISO Distributor can be used to publish available ISOs in an ISO repository over http or https. It is
distinct from the export_distributor. The ISO Distributor ID is iso_distributor.

Configuration Parameters

The following configuration parameters can be used to determine the behavior of the ISO Distributor. Both
configuration parameters are required.

	serve_http

	This is a boolean value, or a string “True” or “False”. If set to True, the distributor will publish the ISO
repository over plain HTTP, port 80. If False, it will not be published over plain HTTP.

	serve_https

	This is a boolean value, or a string “True” or “False”. If set to True, the distributor will publish the ISO
repository over SSL protected HTTP, port 443. If False, it will not be published over HTTPS.

	ssl_auth_ca_cert

	If the distributor is configured with an authorization CA certificate and the repository protection WSGI app is
enabled, the distributed repository will become a protected repository. The given CA certificate will be used
to verify the clients’ entitlement certificates. If this certificate is not provided, the repository will be an
unprotected repository.

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	Pulp RPM Support 2.8.0b5 documentation

 	Technical Reference

Sort Indexes

Overview

Version numbers for RPMs and SRPMs aren’t sortable by normal string comparisons. Take the following
example:

	3.1

	3.9

	3.10 (read: three point ten)

	3.11 (read: three point eleven)

The above versions are sorted from oldest to newest. However, when sorting according to string
sorting rules, the order is determined to be:

	3.1

	3.10

	3.11

	3.9

The rules become more complex when letters are added to the version string. More information
on sorting RPM versions can be found
on the Fedora wiki [http://fedoraproject.org/wiki/Archive:Tools/RPM/VersionComparison] and
the rpmvercmp source [http://rpm.org/api/4.4.2.2/rpmvercmp_8c-source.html].

Pulp

This behavior affects both sorting RPMs as well as querying for RPMs relative to a specific
version (i.e. “RPMs newer than version 3.9”). It applies to both the version and release
attributes on an RPM.

To work around this issue, two extra attributes are added to the RPM’s metadata that is stored
in Pulp’s database: version_sort_index and release_sort_index. When sorting or querying against
either an RPM’s version or release, the query should be done against the sort index attributes
instead.

Calculation

In order to use simple string sorting in the database, the original values for version and
release are encoded for their sort index values. The encoding algorithm is as follows:

	Each version is split apart by periods. We’ll refer to each piece as a segment.

	If a segment only consists of numbers, it’s transformed into the format dd-num, where:
	dd - number of digits in the value, including leading zeroes if necessary

	num - value of the int being encoded

	If a segment contains one or more letters, it is:

	Split into multiple segments of continuous letters or numbers. For example, 12a3bc becomes
12.a.3.bc

	All of these number-only subsegments is encoded according to the rules above.

	All letter subsegments are prefixed with a dollar sign ($).

	Any non-alphanumeric characters are discarded.

Examples:

	3.9 -> 01-3.01-9

	3.10 -> 01-3.02-10

	5.256 -> 01-5.03-256

	1.1a -> 01-1.01-1.$a

	1.a+ -> 01-1.$a

	12a3bc -> 02-12.$a.01-3.$bc

	2xFg33.+f.5 -> 01-2.$xFg.02-33.$f.01-5

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	Pulp RPM Support 2.8.0b5 documentation

Index

 Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

search.html

 Navigation

 		
 index

 		Pulp RPM Support 2.8.0b5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012-2014, Pulp Team.
 Created using Sphinx 1.3.4.

_static/up.png

_static/down-pressed.png

